Showing posts with label urban. Show all posts
Showing posts with label urban. Show all posts

Friday, 31 May 2013

Off-Route Strategies in Non-Visual Navigation

The project addresses the effects of learning method on route comprehension of visually impaired people, and it will determine if changes in geographic scale alter the effectiveness of selected learning media. An understanding of how different methods of learning affect route comprehension will allow current spatial knowledge acquisition theory and orientation and mobility training to be assessed and, if necessary, improved. Traversing space is one of the most cognitively demanding tasks faced by visually impaired people, and often invokes fear of being lost or disorientated. For these reasons there is a need to identify effective strategies of spatial learning that can contribute to the mobility and quality of life of visually impaired people. In the first experiment 24 visually impaired people will learn three short routes across a University campus (in counterbalanced order). Each route will be learned using a different learning method. The 24 subjects will be divided into 4 groups who will learn the route in a different order. The 3 conditions will be (1) pointing to places along the route, (2) making a map of the route, and (3) verbally describing the route. A further (control) group of ten visually impaired subjects will learn the route without any given strategy. Each trial will be video recorded. The three strategies selected are "off-route" strategies. Participants' route learning performance will be measured in several ways: the number of trials required to achieve successful route learning; number of errors made; types of errors; self-reported confidence measures; and assessment by independent judges of performance, hesitancy, and confidence. In the second experiment, 16 participants will learn a route 1.4 miles long through a complex urban environment. Participants will be divided into two conditions. In the first condition, they will learn the route using the most successful strategy from Experiment 1. In the second condition, they will learn the route using no given strategy. Sample sizes in both experiments are relatively small due to the difficulty of recruiting visually impaired participants, but the number of participants and number of trials will be greater than in previous experiments of way-finding and therefore should provide definitive results. By collecting data in a small-scale (university campus) and a large-scale environment (suburban neighborhood) we may find that spatial knowledge acquisition focuses on different cognition tasks at different scales. For the development of an effective orientation and mobility training program, these tasks may be operationalized via one or more simple geographic-based environmental learning procedures. The research addresses important theoretical questions relating to spatial learning and cognition, providing further insights into how visually impaired people construct, store, and utilize spatial knowledge. In so doing, it will address practical issues relating to the improvement of current orientation and mobility training.

PUBLICATIONS

Blades, M., Lippa, Y., Golledge, R.G., Jacobson, R.D., and Kitchin, R.M. (2002) Wayfinding by people with visual impairments: The effect of spatial tasks on the ability to learn a novel route. Journal of Visual Impairment and Blindness 96, 407-419.
Link here

Jacobson, R.D., Lippa, Y., Golledge, R.G., Kitchin, R.M., and Blades, M. (2001) Rapid development of cognitive maps in people with visual impairments when exploring novel geographic spaces. IAPS Bulletin of People-Environment Studies (Special Issue on Environmental Cognition) 18, 3-6.
Link here

Golledge, R.G., Jacobson, R.D., Kitchin, R.M., and Blades, M. (2000). Cognitive maps, spatial abilities, and human wayfinding. Geographical Review of Japan, ser. B: The English journal of the Association of Japenese Geographers, 73 (Ser.B) (2), 93-104.
Link Here

PARTNERS

Department of Geography, University of California at Santa Barbarba, USA
Department of Psychology, University of California at Santa Barbarba, USA
Department of Geography, Florida State University, USA
Department of Psychology, University of Sheffield, UK
Department of Geography, National University of Maynooth, Ireland

Tuesday, 21 May 2013

Supporting Accessibility for Blind and Vision-impaired People With a Localized Gazetteer and Open Source Geotechnology

Rice, M.T., Aburizaiza, A.O, Jacobson,R.D, Shore , B.M., and Paez. F I.  (2012). Supporting Accessibility for Blind and Vision-impaired People With a Localized Gazetteer and Open Source Geotechnology. Transactions in GIS 16 (2):177-190. http://dx.doi.org/10.1111/j.1467-9671.2012.01318.x
Abstract
Disabled people, especially the blind and vision-impaired, are challenged by many transitory hazards in urban environments such as construction barricades, temporary fencing across walkways, and obstacles along curbs. These hazards present a problem for navigation, because they typically appear in an unplanned manner and are seldom included in databases used for accessibility mapping. Tactile maps are a traditional tool used by blind and vision-impaired people for navigation through urban environments, but such maps are not automatically updated with transitory hazards. As an alternative approach to static content on tactile maps, we use volunteered geographic information (VGI) and an Open Source system to provide
updates of local infrastructure. These VGI updates, contributed via voice, text message, and e-mail, use geographic descriptions containing place names to describe changes to the local environment. After they have been contributed and stored in a database, we georeference VGI updates with a detailed gazetteer of local place names including buildings, administrative offices, landmarks, roadways, and dormitories. We publish maps and alerts showing transitory hazards, including location-based alerts delivered to mobile devices. Our system is built with several technologies including PHP, JavaScript, AJAX, Google Maps API, PostgreSQL, an Open Source database, and PostGIS, the PostgreSQL’s spatial extension. This article provides insight into the integration of user-contributed geospatial information into a comprehensive system for use by the blind and vision-impaired, focusing on currently developed methods for geoparsing and georeferencing using a gazetteer.