Showing posts with label accessibility. Show all posts
Showing posts with label accessibility. Show all posts

Sunday, 16 October 2016

Integrating User-contributed Geospatial Data with assistive Geotechnology Using a localized Gazetteer

Rice, M.T.,  Hammill, W.C., Aburizaiza, A.O., Schwarz, S., and Jacobson,R.D. (2011) Integrating User-contributed Geospatial Data with assistive Geotechnology Using a localized Gazetteer, Advances in Cartography and GIScience. Volume 1, 279-291.


We present a methodology for using cartographic-based processes to alert the vision-impaired as they navigate through areas with transitory hazards. The focus of this methodology is the use of gazetteer-based georeferencing to integrate existing local cartographic resources with user-contributed geospatial data. User-contributed geospatial data is of high interest because it leverages local geographic expertise and offers significant advantages in dealing with hazard information in real-time. For blind and vision-impaired people, information about transitory hazards encountered while navigating through a public environment can be contributed by end-users in the same public environment, and quickly integrated into existing cartographic resources. For this project, we build collections of user-contributed geospatial updates from email, voice communication, text messages, and social networks. Other necessary technologies for this project include text-to-voice software, global positioning devices, and the wireless Internet. The methodology described in this paper can deliver usable, cautionary reports of hazards, obstacles, or other time-variable concerns along a pedestrian network. Using the George Mason University campus as a study area, this paper describes how transitory events can be presented in usable form to a vision-impaired pedestrian within a usably short period of time after the event is reported. Buildings and other destinations of interest can be registered in a robust, eXtensible Markup Language (XML)-based, localized gazetteer. Walking networks, parking lots, roads, and landmarks are mapped as vector-based digital information. Any events or changes to the base map, whether planned and disseminated through official channels or reported by end-users, can be linked to a location in the network as established by the attributes cataloged in the localized gazetteer, and presented on an existing base map or in an assistive technology environment. For mobile applications, a vision-impaired pedestrian with a Geographic Information System (GIS) and a Global Positioning System (GPS)-enabled assistive device can receive an alert or warning about proximity to reported obstacles. This warning might include other information, such as alternative paths and relative directions to proceed, also referenced through the localized gazetteer. This research provides insight into challenges associated with integrating user-contributed geospatial in-formation into a comprehensive system for use by the blind or vision-impaired.


Monday, 12 August 2013

Crowdsourcing techniques for augmenting traditional accessibility maps with transitory obstacle information

Jacobson, R.D., Caldwell, D.R., McDermott, S.D., Paez. F. I., Aburizaiza, A.O., Curtin K.M., Stefanidis A, and Qin, H. (2013) Crowdsourcing techniques for augmenting traditional accessibility maps with transitory obstacle information Cartography and Geographic Information Science  40 (3): 210-219.


One of the most scrutinized contemporary techniques for geospatial data collection and production is crowdsourcing. This inverts the traditional top-down geospatial data production and distribution methods by emphasizing on the participation of the end user or community. The technique has been shown to be particularly useful in the domain of accessibility mapping, where it can augment traditional mapping methods and systems by providing information about transitory obstacles in the built environment. This research paper presents details of techniques and applications of crowdsourcing and related methods for improving the presence of transitory obstacles in accessibility mapping systems. The obstacles are very difficult to incorporate with any other traditional mapping workflows, since they typically appear in an unplanned manner and disappear just as quickly. Nevertheless, these obstacles present a major impediment to navigating an unfamiliar environment. Fortunately, these obstacles can be reported, defined, and captured through a variety of crowdsourcing techniques, including gazetteer-based geoparsing and active social media harvesting, and then referenced in a crowdsourced mapping system. These techniques are presented, along with context from research in tactile cartography and geo-enabled accessibility systems.


Friday, 3 May 2013

Haptic Soundscapes

Towards making maps, diagrams and graphs accessible to visually impaired people 

The aim of this research project is to develop and evaluate haptic soundscapes. This allows people with little or no vision to interact with maps, diagrams and graphs displayed via dissemination media, such as the World Wide Web, through sound, touch and force feedback. Although of principal utility for people with severe visual impairments, it is anticipated that this interface will allow informative educational resources for children and people with learning difficulties to be developed and accessed through the Internet. The research project offers a simple, yet innovative solution to accessing spatial data without the need for vision. It builds upon previous work carried out in various departments at UCSB, and fosters inter-disciplinary links and cooperation between usually unconnected research groups. The research hopes to further knowledge and understanding in this emerging field and also to offer practical results that will impact on people's lives. It is strongly felt that the development of the project will lead to continued external funding, and it is our hope that this project will act as a springboard to further research in which UCSB will be a key component.

Further development, usability testing, and expansion
The Haptic Soundscapes project has developed a set of audio-tactile mapping tools to help blind people access spatial information and to help aid research in multi-modal spatial cognition. These tools offer blind people access to the geographic world they cannot otherwise fully experience, creating opportunities for orientation, navigation, and education. Spatial knowledge from maps, charts, and graphs, is obtained through display and interaction with sound, touch, and force-feedback devices. Individuals can use audio-tactile mapping tools to explore an unknown environment or create a audio-tactile map from images displayed on a computer screen. These audio-tactile maps can be disseminated over the internet, or used in educational settings. Next year, several objectives are planned for the Haptic Soundscapes project. These include cognitive experiments to assess a user’s ability to navigate within a scene, between adjacent scenes, and between scenes of different scales using the audio-tactile mapping tools. We will also expand the capability of the audio-tactile mapping system to include text-to-speech synthesis and real-time multi-dimensional sound representation. Several off-campus funding proposals will be submitted. Finally, we will showcase the tools developed in the course of this project by expanding our campus demonstrator - an interactive, navigable audio-tactile map of the UCSB campus.