Showing posts with label SeaTouch. Show all posts
Showing posts with label SeaTouch. Show all posts

Tuesday, 21 May 2013

Comparing Tactile Maps and Haptic Digital Representations of a Maritime Environment

Simonnet, M., Vieilledent, and Tisseau, J. (2011) Comparing Tactile Maps and Haptic Digital Representations of a Maritime Environment. Journal of Visual Impairment and Blindness, 105 (4), 222-234.

Abstract

A map exploration and representation exercise was conducted with participants who were totally blind. Representations of maritime environments were presented either with a tactile map or with a digital haptic virtual map. We assessed the knowledge of spatial configurations using a triangulation technique. The results revealed that both types of map learning were equivalent.


The assessment of non visual maritime cognitive maps of a blind sailor: a case study

Simonnet, M., Vieilledent, S., Jacobson, D. and Tisseau, J. (2010) The assessment of non visual maritime cognitive maps of a blind sailor: a case study, Journal of Maps, v2010, 289-301. 10.4113/jom.2010.1087.

Abstract

Nowadays, thanks to the accessibility of GPS, sighted people widely use electronic charts to navigate through different kinds of environments. In the maritime domain, it has considerably improved the precision of course control. In this domain, blind sailors can not make a compass bearing, however they are able to interact with multimodal electronic charts. Indeed, we conceived SeaTouch, a haptic (tactile-kinesthetic) and auditory virtual environment that allows users to perform virtual maritime navigation without vision. In this study we attempt to assess if heading or northing “haptic” views during virtual navigation training influences non-visual spatial knowledge. After simulating a navigation session in each condition, a blind sailor truly navigated on the sea and estimated seamark bearings. We used the triangulation technique to compare the efficiency of northing and heading virtual training. The results are congruent with current knowledge about spatial frames of reference and suggest that getting lost in heading mode forces the blind sailor to coordinate his current “view” with a more global and stable representation.

Map - data Publication

Simonnet, M., Vieilledent, S., Jacobson, D. and Tisseau, J. (2010) Published Map. In Simonnet, M., Vieilledent, S., Jacobson, D. and Tisseau, J. (2010) The assessment of non visual maritime cognitive maps of a blind sailor: a case study, Journal of Maps, v2010, 289-301. 10.4113/jom.2010.1087.

[VIEW PDF]

A Haptic and Auditory Maritime Environment for Non Visual Cognitive Mapping of Blind Sailors

M. Simonnet, R.D. Jacobson, S. Vieilledent and J. Tisseau. (2009) SeaTouch: A Haptic and Auditory Maritime Environment for Non Visual Cognitive Mapping of Blind Sailors. In K. Stewart Hornsby et al. (Eds.): COSIT 2009, LNCS 5756, pp. 212–226, 2009. Springer-Verlag Berlin, Heidelberg.

Abstract

Navigating consists of coordinating egocentric and allocentric spatial frames of reference. Virtual environments have afforded researchers in the spatial community with tools to investigate the learning of space. The issue of the transfer between virtual and real situations is not trivial. A central question is the role of frames of reference in mediating spatial knowledge transfer to external surroundings, as is the effect of different sensory modalities accessed in simulated and real worlds. This challenges the capacity of blind people to use virtual reality to explore a scene without graphics. The present experiment involves a haptic and auditory maritime virtual environment. In triangulation tasks, we measure systematic errors and preliminary results show an ability to learn configurational knowledge and to navigate through it without vision. Subjects appeared to take advantage of getting lost in an egocentric “haptic” view in the virtual environment to improve performances in the real environment.


Can Virtual Reality Provide Digital Maps To Blind Sailors? A Case Study

Jacobson, R.D., Simonnet, M., Vieilledent, S. and Tisseau, J. (2009) Can Virtual Reality Provide Digital Maps To Blind Sailors? A Case Study. Proceedings of the International Cartographic Congress, 15-21 November 2009, Santiago, Chile. 10pp.

Abstract
This paper presents information about “SeaTouch” a virtual haptic and auditory interface to digital Maritime Charts to facilitate blind sailors to prepare for ocean voyages, and ultimately to navigate autonomously while at sea. It has been shown that blind people mainly encode space relative to their body. But mastering space consists of coordinating body and environmental reference points. Tactile maps are powerful tools to help them to encode spatial information. However only digital charts an be updated during an ocean voyageand they very often the only alternative is through conventional printed media. Virtual reality can present information using auditory and haptic interfaces. Previous work has shown that virtual navigation facilitates the ability to acquire spatial knowledge. The construction of spatial representations from physical contact of individuals with their environment, the use of Euclidean geometry seems to facilitate mental processing about space. However, navigation takes great advantage of matching ego- and allo-centered spatial frames of
reference to move and locate in surroundings. Blindness does not indicate a lack of comprehension of spatial concepts, but it leads people to encounter difficulties in perceiving and updating information about the environment. Without access to distant landmarks that are available to people with sight, blind people tend to encode spatial relations in an ego-centered spatial frame of reference. On the contrary, tactile maps and appropriate exploration strategies allow them to build holistic configural representations in an allo-centered spatial frame of reference. However,  position updating during navigation remains particularly complicated without vision. Virtual reality techniques can provide a virtual environment to manage and explore their surroundings. Haptic and auditory interfaces provide blind people with an immersive virtual navigation experience. In order to help blind sailors to coordinate ego- and allo-centered spatial frames of reference, we conceived SeaTouch. This haptic and auditory software is adapted so that blind sailors are able to
set up and simulate their itineraries before sailing navigation. In our first experimental condition, we compare spatial representations built by six blind sailors during the exploration of a tactile map and the virtual map of SeaTouch. Results show that these two conditions were equivalent. In our second experimental condition, we focused on the conditions which favour the transfer of spatial knowledge from a virtual to a real environment. In this respect, blind sailors performed a virtual navigation in‘Northing mode’, where the ship moves on the map, and in‘Heading mode’, where the map shifts around the sailboat. No significant difference appears. This reveals that the most important factor for the blind sailors to locate themselves in the real environment is the orientation of the maps during the initial encoding time. However, we noticed that the subjects who got lost in the virtual environment in northing condition slightly improved their performances in the real environment. The analysis of the exploratory movements on the map are congruent with a previous model of coordination of spatial frames of reference. Moreover, beyond the direct benefits of SeaTouch for the navigation of blind sailors, this study offers some new insight to facilitate understanding of non visual spatial cognition. More specifically the cognitively complex task of the coordination and integration of ego and allocentered spatial frames of reference. In summary the research aims at measuring if a blind sailor can learn a maritime environment with a virtual map as well as with a tactile map. The results tend to confirm this, and suggest pursuing investigations with non visual virtual navigation. Here we present the initial results with
one participant.

[VIEW PDF]