Friday, 31 May 2013

Transcending the Digital Divide

The purpose of this research is to develop, evaluate, and disseminate a non-visual interface for accessing digital information. The aim is to investigate the perceptual and cognitive problems that blind people face when trying to interpret information provided in a multimodal manner. The project also plans to provide touch sensitive and sound based network interface and navigation devices that incorporate cognitive wayfinding heuristics. Haptic (force feedback) interfaces will be provided for exploring web pages that consist of map, graphic, iconic or image products. Sound identifiers for on-screen windowed, map, and image information will also be provided. These tasks will contribute to transcending the Digital Divide that increasingly separates blind or vision impaired people from the growing information-based workplace. Recent research at UCSB has begun to explore how individuals identify features presented through sound and touch. Other research (e.g. O'Modhrrain and Gillespie, 1998; McKinley and Scott, 1998) have used haptics to explore screen objects such as windows, pulldown menus, buttons, and sliders; but map, graphic and other cartographic representations have not been explored. In particular, the potential of auditory maps of on-screen phenomena (e.g. as would be important in GIS applications) has barely been examined and few examples exist of combining audio and touch principles to build an interface. While imaginative efforts to build non-visual interfaces have been proceeding. there is a yet little empirical evidence that people without sight can use them effectively (i.e. develop a true representation of the experienced phenomena). Experiments will be undertaken to test the ability of vision impaired and sighted people from different age groups to use these new interface or features such as: (i) the haptic mouse or a touch window tied to auditory communication displays; (ii) digitized real sounds to indicate environmental features at their mapped locations; (iii) "sound painting" of maps, images, or charts to indicate gradients of phenomena like temperature, precipitation, pressure, population density and altitude. Tests will be developed to evaluate (i) the minimum resolvable area for the haptic interpretation of scenes; (ii) the development of skills for shape tracing in the sound or the force-feedback haptic domain, (iii) the possibility of using continuous or discreet sound symbols associated with touch sensitive pads to learn hierarchically nested screen information (e.g. locations of cities within regions within states within nations); (iv) to evaluate how dynamic activities such as scrolling, zooming, and searching can be conducted in the haptic or auditory domain, (v) to evaluate people's comprehension and ability to explore, comprehend, and make inferences about various non-visual interpretations of complex visual displays (e.g. maps and diagrams), and (vi) to explore the effectiveness of using a haptic mouse with a 2" square motion domain to search a 14" screen (i.e. scale effects).